Conflicts of Interests Disclosure

• AAO Foundation – Hoskins Center for Quality and Safety
• American Board of Ophthalmology
• Centers for Disease Control and Prevention

• American Glaucoma Society
• American University Professors of Ophthalmology

• Consultant /Research
 – Alcon Research Institute
 – Kellogg Foundation
 – National Eye Institute
• University of Michigan
• Duke University

• Intellectual property
 – Statins for glaucoma
 – EMR decision support and data entry

Framing “Tele-ophthalmology” or “E-Eye Health”

• Rationale
• Current general usage
• Meeting presentations
• Additional considerations
• Future implications
The Creative Disruption of Medicine

Old Medicine

New Medicine

Super Convergence

Creative Disruption

Aging population and chronic disease
Unsustainable costs
Workforce challenges
New reimbursement models

Information systems

“Omic” sciences

Adapted from “The Creative Destruction of Medicine” by Eric Topol

Population Health & Health Innovation

Spectrum of care

Wellness

End of life

Quaternary Hospital

Site of service

Community Health

Traditional Delivery

New Models & Innovation

Source: Paul Lee
Framing “Tele-ophthalmology” or “E-Eye Health”

- Rationale
- Current general usage
- Meeting presentations
- Additional considerations
- Future implications

E-Health / Tele-health

Kaiser-Permanante - AAPC, 2017

- 52 percent of the more than 100 million patient encounters at Kaiser take place remotely.
- 95 percent of its nearly 12 million members are covered on a capitated basis.
- Invests about 25 percent of its annual capital spending on IT.

Additional Kaiser Programs

- “House calls” for e-health visits
- Secure e-mail usage increases HEDIS scores
- E-health saves $ for Kaiser due to capitated state

- Across all systems in USA, projected to be 25% of outpatients visits by 2025
Drivers for Growth in Tele / Mobile Health
(ATA Survey, 2017)

- Consumer interest 48%
- Value-based care transition 26%
- Reduced cost of care 11%
- Evidence-based practice guidelines 7%
Ongoing current usage

- ROP screening AND monitoring
- Diabetic retinopathy screening and monitoring
- AMD screening and monitoring
- Glaucoma (open-angle / POAG)
- Refractive error
- Initial eye exam for screening and referral

Active exploration

- Emergency room coverage
- Corneal diseases
- Angle closure glaucoma
- Comprehensive eye exam for management
- Others

Framing “Tele-ophthalmology” or “E-Eye Health”

- Rationale
- Current general usage
- Meeting presentations
- Additional considerations
- Future implications
Overview / FDA Topics

- Accelerating innovation to encourage digital health – Z Bodnar
- Regulation of digital health – B Patel
- FDA perspectives on mobile medical applications and telemedicine – R. Schuchard
- Medical device data systems – K Yeshwant

Uses in Ophthalmology

- Retinopathy of Prematurity
 – Paul Chan, MD
- Diabetic Retinopathy
 – Ingrid Zimmer-Galler, MD

- Advanced Analytics
 – Michael Chaiang, MD
- Machine Learning
 – Linda Zangwill, PhD
Key Questions

• Patient Interface with Digital Health
 – John Reites

• Digital health device as aid for diagnosis
 – D. Azar; L Bottorff; D Morrison; D Moshfeghi, M Woodward; I Zimmer-Galler // N Afshari and M Trese (moderators)

• Safety and effectiveness for use of ophthalmic device
 – M Abramoff, M Chiang, P Dugel; M Goldbaum; Q Oswald; L Zangwill // M Blumenkranz and K Nischal (moderators)

• Safeguards and methods for mitigating risks
 – L Al-Aswad; N Karandikar; D Myung; J Reites; E Sharon // M Humayun and D Sprunger (moderators)

Framing “Tele-ophthalmology” or “E-Eye Health”

• Rationale
• Current general usage
• Meeting presentations
• Additional considerations
• Future implications
Additional Considerations for Use

• **Technical performance**
 – What is the reference standard / “gold standard”
 – Validity
 • Does it reflect or capture the “gold standard” or “truth”
 • Does it achieve the specified purpose
 – Reliability
 • Test-retest – does it provide the same result each time
 • Intra-test – is it consistent internally
 • Inter-rater – if applicable, do different “observers” get same results

• Implementation considerations

• Legal issues

• Payment coverage

ATA Validation Standards

Diabetic Retinopathy

• Level 1 – no or minimal pathology vs worse
• Level 2 – presence or absence of sight-threatening retinopathy (severe NPDR) for screening
• Level 3 – provide clinical recommendations similar to in person exam
• Level 4 – replacement for ETDRS photos for research or clinical work
Comparison of Screening Techniques
Pugh JA, Jacobson JM, van Heuven WAJ, et al, Diab Care 1993;16: 889-95

<table>
<thead>
<tr>
<th>Ophthalmologists</th>
<th>Miss PDR 50 / 73</th>
<th>“None” when PDR mod-sev 19 / 73</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA’s</td>
<td>43 / 51</td>
<td>11 / 51</td>
</tr>
<tr>
<td>One non-mydriatic</td>
<td>30 / 64</td>
<td>9 / 64</td>
</tr>
<tr>
<td>Three dilated</td>
<td>17 / 68</td>
<td>6 / 68</td>
</tr>
</tbody>
</table>

Uses 4 stage system in this analysis
none / mild / moderate - severe / proliferative

Interobserver Differences ≥ 0.2 DD
From Feuer, et al, AJO, 2002

<table>
<thead>
<tr>
<th>Authors</th>
<th>Groups</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitchings, et al</td>
<td>3 specialists</td>
<td>8 to 20 %</td>
</tr>
<tr>
<td>Tielsch, et al</td>
<td>2 specialists</td>
<td>17 to 19 %</td>
</tr>
<tr>
<td>Varma, et al</td>
<td>6 specialists</td>
<td>19 %</td>
</tr>
<tr>
<td>Abrams, et al</td>
<td>6 optometrists</td>
<td>29 %</td>
</tr>
<tr>
<td></td>
<td>6 residents</td>
<td>28 %</td>
</tr>
<tr>
<td>Shuttleworth</td>
<td>2 ophthalmologists</td>
<td>3 %</td>
</tr>
<tr>
<td>Feuer, et al</td>
<td>Reading Center</td>
<td>5 to 7 %</td>
</tr>
</tbody>
</table>
Meta-Analysis of Comparison In-Person to Remote Care (Thomas SM et al, PLOS One, 2014)

- Pooled analysis (n=45 included studies)
 - Diagnostic accuracy (n=8) using ONH exams (remote exams)
 • Sensitivity 83%
 • Specificity 79%
 - Diagnostic accuracy (n=2) using VF for suspects (remote exams)
 • Sensitivity 82%
 • Specificity 96%
 - Diagnostic accuracy (n=3) for in-person exam
 • Sensitivity 75% (+/- 28%)
 • Specificity 89% (+/- 10%)

Additional Considerations for Use

- Technical performance
- Implementation considerations
 - Use in care continuum
 - Level of autonomy of system
 - Patient acceptance, understanding and use
 - Technical infrastructure
- Legal issues
- Payment coverage
When in Clinical Care is it Used – and what is its purpose?

Clinical Spectrum
- General information for public
- Self-care and tracking of health
- Entry into system via screening
- Active patient care in system (“new patient”)
- Continuation with care (“return patients” or “active monitoring”)

Level of Autonomy
- Tool to motivate for additional evaluation
- Decision aid for detection of specific finding(s)
- Decision aid for diagnosis and / or management
- Determine diagnosis and / or management
- In lieu of specialist

Patient Willingness to Use Video Care and Other Forms of Care
(Harris Poll, 2014)

- 64% willing to participate in MD video visit
 - 61% cited convenience
 - 11% aged 18 to 34 would switch to MD doing
- If they or loved one with high fever in middle of night and needed attention
 - 41% go to ER
 - 21% video visits
 - 17% call a 24 hour nurse call line
 - 5% online symptom checker
National Academy of Medicine
Definition of Diagnostic Error

• “… the failure to
• (a) establish an accurate and timely explanation of the patient’s health problem(s) or
• (b) communicate that explanation to the patient
Patient Follow-up of DR Screening

- 5 primary care clinics in rural and underserved populations – 1661 patients
- Impact on DR assessments
 - Pre-implementation 26%
 - After implementations 40%
- Follow-up care
 - 60% completed referral visit

Additional Considerations for Use

- Technical performance
- Implementation considerations
- Legal issues
 - State licensure laws
 • Patient location as “site” of practice
 • “Consultation” exception in many states
 - Corporate practice of medicine restrictions
 - HIPAA issues (e.g., business associate agreement with vendor(s))
 - Legal liability
- Payment coverage
Legal Liability Issues to Review

Questions pertaining to physician

• Is telehealth service covered by insurance policy?
• Is it covered if service is provided to patient in another state?
• Is it within at least a “respectable minority” standard of care?
• Is it consistent with federal and state rules?

Systems issues in e-health

• Is misdiagnosis / mismanagement the responsibility of the system or the physician?
 – Level of autonomy of system
 – Systemic flaw or bias
• What is role, if any, of systems maintenance of technical infrastructure (e.g., display and lighting standards)
Framing “Tele-ophthalmology” or “E-Eye Health”

- Rationale
- Current general usage
- Meeting presentations
- Additional considerations
- Future implications

Relationship with Patient Interactions and Health System Design

- Establish relationship
- Acquire data
- Interpret data
- Accurate diagnosis
- Appropriate therapy
- Patient use of care
- Follow-up Care
- Communities / Networks

- Personal to patient and physician
- Instruments
- Algorithms
- Data integration / Analysis
- Point of care support / decision systems
- Leverage technology
- Relationships
New Market Entrants

Private Equity

Value of Diversity in Groups for Complex Tasks
Scott Page, Center for the Study of Complex Systems, Univ. of Michigan

http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0071154
Diabetic Retinopathy Analysis Using Machine Learning (DREAM)

<table>
<thead>
<tr>
<th>Method</th>
<th>SEN (%)</th>
<th>SPEC (%)</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESSIDOR Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanchez et.al.[27]</td>
<td>92.2</td>
<td>50</td>
<td>0.876</td>
</tr>
<tr>
<td>Agurto et.al.[8]</td>
<td>92</td>
<td>54</td>
<td>0.84</td>
</tr>
<tr>
<td>Antal et.al.[33]</td>
<td>96</td>
<td>51</td>
<td>0.875</td>
</tr>
<tr>
<td>Esnaashari et.al.[32]</td>
<td>95</td>
<td>89.29</td>
<td>-</td>
</tr>
<tr>
<td>Barriga et.al.[34](400 images)</td>
<td>98</td>
<td>67</td>
<td>0.86</td>
</tr>
<tr>
<td>DREAM</td>
<td>100</td>
<td>53.16</td>
<td>0.904</td>
</tr>
<tr>
<td>Local Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agurto et.al.[35](2247 images)</td>
<td>92</td>
<td>51</td>
<td>0.89</td>
</tr>
<tr>
<td>Acharya et.al.[36](300 images)</td>
<td>82</td>
<td>88</td>
<td>-</td>
</tr>
<tr>
<td>Acharya et.al.[37](331 images)</td>
<td>82</td>
<td>86</td>
<td>-</td>
</tr>
<tr>
<td>Usher et.al.[38](1273 images)</td>
<td>94.8</td>
<td>52.8</td>
<td>-</td>
</tr>
</tbody>
</table>
Telemedicine - Glaucoma

- PubMed – 73 papers on 7/5/15; 85 papers on 8/7/16; 97 papers on 10/11/17
- First paper (English) in 1998
- Use of teleconsultation enables remote management of 69% of glaucoma and suspects by optometrists, 48% requiring repeat teleconsult
Comparison of Screening Techniques
Pugh JA, Jacobson JM, van Heuven WAJ, et al, Diab Care 1993;16: 889-95

Miss PDR “None” when PDR or mod-sev or mod-severe

<table>
<thead>
<tr>
<th>Ophthalmologists</th>
<th>50 / 73</th>
<th>19 / 73</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA’s</td>
<td>43 / 51</td>
<td>11 / 51</td>
</tr>
<tr>
<td>One non-mydriatic</td>
<td>30 / 64</td>
<td>9 / 64 (10)</td>
</tr>
<tr>
<td>Three dilated</td>
<td>17 / 68</td>
<td>6 / 68 (3)</td>
</tr>
</tbody>
</table>

Uses 4 stage system in this analysis
none / mild / moderate - severe / proliferative

Eye Care Use for 260 Patients Seen in Clinic for 2 Years after Teleretinal Screening by Disease
(Chasan JE, et al, JAMA Ophthal 2014)