Example: Retinopathy of Prematurity

- Leading cause of childhood blindness
 - Treatable if early Dx (CRYO-ROP, ETROP, BEAT-ROP)
 - USA: 40,000 cases/year, 600 blind/year
 - Economic impact

- AAP-AAO guidelines (2001): “done with indirect ophthalmoscopy” in NICU
 - Documentation: hand-drawn sketches

- Challenges of dogma (practical):
 - Time-intensive: travel, coordination
 - Exam: Difficult, imprecise, subjective
 - More infants at risk (survival)
 - Medicolegal liability
 - Limited access to care & training, especially in rural & underserved areas

Fierson et al, Pediatrics 2001; 108:809-11

Diagnosis: Gold Standards & ICROP

- Originally: descriptive, unstructured

- ICROP (1984):
 - International standard for clinical exams, infrastructure for multicenter clinical trials
 - Parameters: zone (I-III), stage (1-5), extent (clock hours), plus disease
 - Most fields don’t have this standardized terminology...
 - CRYO-ROP, ETROP: plus disease is most critical parameter for severe treatment-requiring ROP → “arterial tortuosity & venous dilation” (standard published photo)

ICROP, Arch Ophthalmol. 1984; 102:1130-4
Challenge: Diagnostic Accuracy

- 3 (14%) experts: “Plus”
- 18 (86%) experts: “Not Plus”

- 11 (52%) experts: “Plus”
- 10 (48%) experts: “Not Plus”

Science & Art of Medicine

- So what is plus disease:
 - Like pornography: “can’t define, but know it when I see it”
 - Is “arterial tortuosity & venous dilation” in “central retina” an over-simplification?
 - Could this explain variability?

- Capture & encode detailed qualitative thoughts of 7 experts during plus disease diagnosis:
 - Videotaped while reviewing 7 images: (1) think-aloud protocol, (2) specific questions

Challenge: Disagreement in Process

- Expert 1: Diagnosis Plus Disease
 ...looks like a very low gestational birth baby, it's taken quite a long time to get to this stage. There is a lot of arterial tortuosity, there is a little bit of venous congestion in the superior temporal and superior nasal quadrant, more in the superior half of the retina. By definition I think this has to be plus, because it's two quadrants at least, and even the other quadrants aren't normal... I don't know whether the peripheral disease is that bad, it may not be actually, could be...

- Expert 2: Diagnosis Pre-Plus Disease
 ...there is a lot of tortuosity of the arteries, the veins are about 2 to 1. This could either be a pre-plus eye or a normal variant, depending on a quick look at the periphery... curiously there is a lot of tortuosity down here (inferior), it looks like there is disease up there... the fact that tortuosity is everywhere, you want to make sure if it's a congenital tortuosity kid... I would suspect pre-plus, could also be a normal variant.

- Expert 4: Diagnosis Neither Pre-Plus nor Plus Disease
 ...vessels seem to be branching excessively in that region (superonasal) and some increased tortuosity (superotemporal) as well, and this vein looks too fat (superotemporal) ... if all the quadrants were like this quadrant (superotemporal) then it would be at least pre-plus and verging on plus, but since it's only one quadrant that's highly questionable... would not classify it as plus, I could see why some would call it pre-plus, I would not call it pre-plus, I would call it no plus.

Features Mentioned by Experts

<table>
<thead>
<tr>
<th>Feature</th>
<th>Number of Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial tortuosity</td>
<td>42/42</td>
</tr>
<tr>
<td>Arterial dilation</td>
<td>8/42</td>
</tr>
<tr>
<td>Venous tortuosity</td>
<td>10/42</td>
</tr>
<tr>
<td>Venous dilation</td>
<td>42/42</td>
</tr>
<tr>
<td>Central vessels</td>
<td>8/42</td>
</tr>
<tr>
<td>Peripheral vessels</td>
<td>14/42</td>
</tr>
<tr>
<td>Number of quadrants of abnormality</td>
<td>23/42</td>
</tr>
<tr>
<td>Vascular branching</td>
<td>8/42</td>
</tr>
<tr>
<td>Macular features</td>
<td>3/42</td>
</tr>
<tr>
<td>Other vascular features</td>
<td>7/42</td>
</tr>
</tbody>
</table>

Approach: Retinal Image Analysis

- **Goal**: more accurate diagnosis by quantifying vascular parameters with image analysis
- Accurate **segmentation** of vessels from images
- Validation against robust **reference standard**
- Which **image features** (e.g. tortuosity, branching) are the key ones? How to quantify?
 - Strategy #1: Classic machine learning methods
 - Strategy #2: Convolutional neural networks ("deep learning")

![Images](Ryan MC et al, AMIA Proc Annu Symp, 2014; 1902-10)

Machine Learning Approach

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy (vs. RSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>64/73 (87%)</td>
</tr>
<tr>
<td>Expert 2</td>
<td>63/73 (86%)</td>
</tr>
<tr>
<td>Expert 3</td>
<td>58/73 (79%)</td>
</tr>
<tr>
<td>Expert 4</td>
<td>72/73 (99%)</td>
</tr>
<tr>
<td>Expert 5</td>
<td>64/73 (88%)</td>
</tr>
<tr>
<td>Expert 6</td>
<td>62/73 (85%)</td>
</tr>
<tr>
<td>Expert 7</td>
<td>68/73 (93%)</td>
</tr>
<tr>
<td>Expert 8</td>
<td>64/73 (88%)</td>
</tr>
<tr>
<td>Expert Consensus</td>
<td>71/73 (97%)</td>
</tr>
<tr>
<td>Computer System</td>
<td>69/73 (95%)</td>
</tr>
</tbody>
</table>

- **Manual image segmentation**
 - Reference standard: combines image reading & ophthalmoscopic diagnosis
 - Best performance with 6DD circular crop, **acceleration** metric
 - Variable expert accuracy (79-99%)
 - High computer system accuracy (95%)

Deep Learning for ROP

- Used for diabetic retinopathy (JAMA), skin cancer (Nature), AMD
- Train **fully-automated** CNN for ROP → 6000 posterior pole images, each with reference standard (plus vs. pre-plus vs. normal)
 - AUC 0.98 to identify plus disease
- Independent test set: 91% accuracy (8 experts: mean 82% accuracy, range 77-94%)
- Occlusion analysis: what parts of image did experts use?

Inter-Expert Variability: Spectrum

- Under-callers vs. over-callers (consistent across multiple data sets)
- **Continuous spectrum** of abnormality: over-simplified by categories
- Experts: **good at comparisons**, but **bad at labeling** (drawing lines)

Campbell et al, Ophthalmology 2016;123:2338-44.
Continuous Spectrum of Abnormality

Key Points for FDA: Expert Systems

- Ophthalmic diagnosis is inherently subjective & qualitative: ROP (tortuous?), diabetic retinopathy (NV?)
 - Significant inconsistency, even among experts (“drawing the lines”) → performance of “real-world” physicians may be worse, unclear impact of “clinical judgment”
 - Potential role for expert systems to improve consistency
 - Bar for systems should be “human-like”, not “perfection”
 - Validation: requires transparency, cannot use only a single human
- Rapidly changing field: systems may undergo regular cycles of improvement (e.g. training with new data, better algorithms)
 - Ideal to have efficient mechanism for “upgrades”
- Does intended use of systems matter: advice to physicians (“decision support”) vs. closed-loop system (e.g. screening for primary care)
 - Many real-world examples of the former outside FDA purview (e.g. EHRs)
 - I hope FDA will consider different levels of oversight based on use